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The model under consideration is a hard-core lattice gas in an external potential 
on a Bethe lattice with nonequilibrium time evolution governed by Glauber 
dynamics. A hierarchical decoupling of nonequilibrium correlations, motivated 
by and asymptotically providing the exact form of equilibrium multisite correla- 
tions in the inhomogeneous potential regime, is proposed. Application is made 
to the process of lattice gas crystallization, at high activity, from a spatially 
homogeneous fluid phase to an equilibrium crystal phase with unequal sublat- 
tice densities. The first few levels of the hierarchical decoupling give a consistent 
picture of two kinds of nonequilibrium instabilities--one leading to a sublattice 
density bifurcation, the other associated with an abrupt increase in densities and 
correlations in time. 

KEY WORDS: Lattice gas; Glauber dynamics; inverse profile equation; 
density bifurcation. 

1. INTRODUCTION 

O w i n g  to the lack of  an  expl ici t  canon ica l  fo rmal i sm,  n o n e q u i l i b r i u m  

p h e n o m e n a  r ema in  obscure  in m a n y  re levant  aspects.  A t t e m p t s  have  been 
m a d e  to app ly  direct ly  the s t anda rd  m e t h o d s  of  equ i l i b r ium t h e r m o -  

dynamics ,  wi th in  the f r a m e w o r k  of  K i r k w o o d - S a l s b u r g  equa t ions  tl} and  

the l iquid-s ta te  repl ica  me thod ,  ~2'3~ to i r revers ible  processes  such as r a n d o m  

sequent ia l  adsorp t ion .  O n  the o the r  hand,  for m u c h  m o r e  compl i ca t ed  

revers ible  n o n c o n s e r v a t i v e  s tochas t ic  dynamics ,  say of  G l a u b e r  type,  t4) the 
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guaranteed asymptotic time evolution of the system to its equilibrium state 
with nontrivial spatial and correlation structure can restrict and/or suggest 
the form of time-dependent quantities. 

Rigorous approaches to systems with time evolution governed by local 
Glauber dynamics are usually based on an infinite hierarchy of "equations 
of motion" for time-dependent correlations. This hierarchy can be exactly 
decoupled at some level only in very special cases: ID zero-field Ising 
model with cell-interaction structure, ~51 the zero-field Potts chain t6'7~ (both 
systems exhibit a nonuniversal dynamic critical exponent z), the voter 
model ~8'9~ lacking detailed balance. From a macroscopic point of view, the 
hierarchy provides a natural way of generating realistic hydrodynamic-type 
equations describing diffusion phenomena in spatially inhomogeneous 
systems, such as the phase segregation/91 

A different class of nonequilibrium phenomena is associated with 
inhomogeneity on a microscopic scale, like the process of crystallization (for 
a recent review of spatiotemporal pattern formation in systems away from 
equilibrium, see ref. 10). Even with homogeneous external conditions, the 
system has to be treated from the beginning as inhomogeneous in order to 
describe consistently densities and correlations inside the cell-structured crystal 
phase. The aspect of inhomogeneity is especially important in the non- 
equilibrium phase transition from a homogeneous fluid to a solid phase. In 
order to obtain a consistent picture of this phase transition, it is important 
to ensure, at every level of an unavoidable approximation hierarchy, the 
correct approach of the system to its exact equilibrium crystal state charac- 
terized not only by a position-dependent density profile, but also by the whole 
set of position-dependent multisite correlations. The fact that this task is far 
from being simple is better seen when we recall that even the equilibrium 
statistics of an inhomogeneous system is not well understood at present. The 
only exceptions are models on simply connected lattices IIJ-141 which possess, 
within the density functional formalism, local forms of the inverse profile rela- 
tion, i.e., the dependence of the external potential on the evoked density profile. 

In this paper, we consider a hard-core lattice gas model on a Bethe 
lattice with NN exclusion in an external potential. At sufficiently high 
activity, this model exhibits as the only stable equilibrium solution a sym- 
metry-broken phase with different particle densities on the two adjacent 
sublattices] m an apparent Bethe-lattice counterpart of the crystal phase in 
2D hard-square tjS-16) or hard-hexagon Ij6'~71 models. The nonequilibrium 
adsorbtion and deadsorbtion of gas particles is governed by Glauber 
dynamics. Our aim is to describe consistently the process of lattice gas crys- 
tallization from a homogeneous fluid phase to an inhomogeneous solid 
phase. Emphasis is put on the study of instability leading to the sublattice 
densities bifurcation. 
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The paper is organized as follows. In Section 2, we review the formalism 
of Glauber dynamics for the lattice gas under study in a site-dependent 
external potential, and formulate a simplified hierarchy of "equations of 
motion" for special time-dependent correlations defined on connected 
clusters of sites. In Section 3, we propose a hierarchical decoupling of these 
correlations, motivated by their exact form found in the equilibrium 
inhomogeneous regime. In Sections 4 and 5, we study the stability of a 
homogeneous fluid phase with respect to the sublattice density bifurcation, 
deduced from "equations of motion" at different decoupling levels. 

2. G L A U B E R  D Y N A M I C S  FOR I N H O M O G E N E O U S  LATTICE 
GAS 

The model under consideration is a lattice gas on a Bethe lattice with 
an arbitrary coordination number q, with a hard-core exclusion for the 
occupancy of NN sites, and in an inhomogeneous potential u.,.. 

At thermodynamic equilibrium, the probability that a site is empty 
(a.,. = O) or occupied (a.,. = 1 ) is given, to within a a.,.-independent propor- 
tionality factor, by 

q 

px(a . , . )~exp( - - f luxa~)  1-[ (1--a.,_a.,.+~) (I)  

where fl is the inverse temperature and the product runs over all NN's  of 
site x. 

The nonequilibrium time evolution of the system of adsorbing and 
deadsorbing gas particles is considered to be governed by Glauber 
dynamics. Namely, the probability function p(~, t) that the state variables 
take on values ~ = {a,.} at time t satisfies the master equation 

d 
~ p(~,; t) = -Y. .  w,.(,~) p(,~; t) + Y. w.,. (,~ I o-.,. --, 5.,.) p (,~ f o-.,. --, 5,.; t) 

x A- 

(2) 

Here, we use the notation 5.,.= 1 - a , .  for reversed site occupation and 
w,.(g) is the probability per unit time that the occupancy at site x changes 
from a.~ to 5.,.. In order to ensure that the system will reach equilibrium at 
t--* oo, the transition probabilities have to satisfy the detailed balance 
condition 

px(ax  = 1 ) w.,.(ax = O) 
(3) 

px(a,. = O) w,.(ax = 1 ) 
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which, by virtue of (1), is equivalent to 

q 

Wx(aO~ax+zx(l-ax) I~ (1-ax+, , )  (4) 
a = ]  

where zx=exp(-flu,~); the ax-independent proportionality factor is not 
irrelevant, but if it is a constant, it only determines time scale. The master 
equation (2) can then be written in a compact form as follows: 

d p ( ~ ; t ) =  ~. ( 2 a x - 1 ) [ z x  ISI ( 1 - a x + ~ ) ( 1 - a ~ ) - a ~ , ]  
x. {,r~ = o.1 } a=l 

. - - q "  t xp (~la,. ax; t )  (5) 

To obtain a system of differential equations for the expectation values 
of the occupation numbers and higher-order density correlations, 

(o'x) , = ~ O'xp(~r; t), (O'~O'y..-), = ~ o'xO'y .-.p(~r; t) 
{,,} {~} 

we proceed in the standard way, i.e., multiply both sides of (5) by the 
corresponding state variables and then sum over all ~, taking into account 
the equality Z,=o.1 ( 2 a - l ) = 0  for all remaining state variables. For 
tactical reasons, we take advantage of the exclusion character of the NN 
interaction and construct in this way a chain of coupled equations for one- 
site densities px = ( a x ) ,  and the probabilities of connected clusters of 
vacant one, two .... sites at time t, 

dtPx=Z.~ ft.,- fix+, - P x  (6a) 

/ 
dt " " 

+Px+Px+~ (6b) 
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dt . . . .  , 

r ! 

+ 2 - p ~ - P x + ~ - - O x + b  ( a C b )  (6c) 

and so on. Here, we have used the notation (x + a) + c for the cth of the 
nearest neighbors of the ath of the nearest neighbors of site x (thus the 
whole set { (x + a ) +  e} c = 1, ..., q contains site x itself) and take advantage 
of the fact that the time evolution from a correct initial state with no pair 
of occupied adjacent sites always retains ~crxex+~) ,=0.  Note that rela- 
tions (6a) and (6b) are, due to the exclusion nature of the NN interaction, 
identical. 

3. H IERARCHICAL DECOUPLING OF CORRELATIONS 

3.1. Equil ibrium Correlat ions 

The chain of equations (6) provides an infinite set of interrelations 
between probabilities of connected empty clusters of various sizes at time t. 
To decouple it, we have to restrict ourselves, at a given approximation 
level l, to all multisite correlations of size ~< l and to express all higher- 
order correlations of size > l in terms of them. A reasonable approximation 
scheme of nonequilibrium correlations has to provide the exact  equilibrium 
solutions to Eqs. (6), 

p * = p x ( t ~ o o ) ,  (5,.fix+ a)* = (5.~ff.~ + ~), ~ ~ 

(~.~6.~+o~x+~>* = ( ~ x ~ x + , ~ x + b > ,  . . . . . .  

determined by the stationarity conditions 

dpx /d t=O,  d ( f f x f f x + , ) , / d t = O ,  d ( f_ , .6x+og , .+b) , /d t=O .... 

The equilibrium statistics of an inhomogeneous system is, in general, 
very complicated. However, for simply connected lattices like the Bethe 
lattice the articulation character of lattice points permits a local thermo- 
dynamic description of the system within the inverse formulation, with 
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site-dependent densities p.,. chosen as the independent controlling 
variables.<12.1.~ For the present system, the inverse profile equation 

p*(1 -p*)',-' 
(7) 

7< l-I,", = ,  (1 * * 
- + . ~  

- P x  - P.,-+ ~) 

has been obtained by Robledo and Varea <m using Widom's potential dis- 
tribution theorem. <18) The introduction of the inverse format is very natural 
for the set of differential equations (6) provided that the explicit forms of 
all equilibrium multisite correlations in terms of {p*} are available. In 
what follows we will show that for the model considered this is the case. 

As has been already mentioned, the inverse profile (7) is a special case 
of local inverse relations for simply connected lattices. It can be derived 
by using c12> the independence of the potential at a given site x from the 
densities inside lattice subsets which can be separated from site x via arti- 
culation points :~x. In the case of the Bethe lattice, we can in this way 
reduce the original problem to the inverse problem of a finite cluster of sites 
{ x , x + a ( a = l  ..... q)} with the given density Pr~ stp.,-,* P.,.+,,* ( a = l  ..... q)}. 
The effect of the remaining part of the system is reflected through the 
modification of zx +,, --+ ~.x + ,, but not of z,. itself. Within this local lattice 
structure the inverse relation (7) is straightforwardly available. 

Let us now apply the above topological considerations to the calcula- 
tion of the exact form of the equilibrium correlation (1--[.,- ~ a+ #.,-)*, i.e., the 
probability of a connected cluster ~ =  {Q,; ~b} of empty sites xsQ+. with 
NN two-site bonds (x,  y )  ~ ~b. The coordination number of site x e (2, 
within the cluster (2 will be denoted by q.,.. According to the previous 
analysis, in the inverse format, the cluster D can be considered separately 
from the system with the given internal densities {p.*} if we take into 
account the modification z.,. ~ ~.,. when the coordination number of point x 
has been changed upon the deletion of the cluster Q. It follows that the 
multisite probability of empty sites (I-I,-~a, 6,.)* is then equal to 1/Z((2) 
with Z(g2) the partition function of the cluster Q. In order to calculate 
Z(Q), we will reduce the cluster size via successive deletion of its boundary 
points x e0~2+, with cluster coordination number q.,.= 1. The two-site 
inverse problem for site x ~ a(2,., results in 5.=p.* / ( l~  - p.* - p.,.*+ 1 ), where 
site x + 1 is the only NN of x in (2. Elimination of point x ~  a~,. picks 
up the multiplicative contribution (l+-~x) (1 * = - p . ~ + l ) / ( 1 - p . * -  * P_~+l) 
to Z(Y2) as well as multiplying z+,.+~ (resp. z7,.+1 ) by the factor 
(1 -  p* -p . , .+  i)/( 1 - P x + l ) ,  keeping in this way the correct form of the 
inverse profile equation for site x + 1 upon the deletion of site x. Perform- 
ing this elimination procedure for every boundary site at every elimination 
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level down to zero number of cluster points, we collect and multiply all 
factors generated and arrive at 

Z((2) = .,-~asl-[ (1--P.*)q~-'/ <~ H+Q~ (1 - p * -  p.*) 
. ' , ,  

Consequently, 

( , ' [ - I ) \ *  H< ....... >~n~(5,.5,.)* H< ...... ,+n~(l-p.*-p*) ~.,. = " " - - ( 8 )  p.,) .  , -_,-~a+ - 1-L+Qs(<~-,->*) ++-' 1-1.++as(l_ * q r -  

Using the inverse relation (7) and assuming Px = P.*, it is easy to verify that 
this form of equilibrium correlations annuls the rhs of all equations (6). 

3.2. Nonequilibrium Correlations 

The exact local formula (8) for multisite correlations of empty sites in 
the inhomogeneous equilibrium regime is appealing: the probability of an 
empty cluster is factorized into the NN two-site probabilities of empty sites. 
The denominator compensates the "superfluous" (qx -  1)-times presence of 
each site x in NN pairs. Under nonequilibrium conditions, the structure of 
higher-order correlations (of empty sites) is much more complicated: every 
cluster shape represents a new topological element which follows its own 
time evolution. On the other hand, the NN structure of equilibrium corre- 
lations rigidly restricts, and simultaneously suggests, the possible choices of 
realistic forms of nonequilibrium correlations in the inhomogeneous 
regime. 

Let us treat the model at the lth approximation level as defined at the 
beginning of this section, i.e., consider the chain of equations (6) for all 
topologically nonequivalent clusters of size ~<L For every higher-order 
probability (I-[.,-~a~8,-), of an empty cluster s"2 with Ig2sl > l occurring in 
the chain of equations we postulate the following hierarchical decoupling 
procedure. First, we find all possible topological realizations of clusters of 
size / inside (2, 

{ Q < O ( l  ) . r I~+. (/)l =1, {~/)(z), ~'~"(/)} = ~ }  

with the corresponding contribution 1-[i <H.,.+Q<+,~,~5,.),. The factoriza- 
tion of (H.,.+a+c[,.), through all /-site correlations evidently covers all 
( l - l ) - s i t e  clusiers {(2<~ with the possible multiple (and, con- 
sequently, "superfluous") presence of some of them in more than one 
/-site correlation. Therefore, on the second hierarchical level we divide 
Hi  (Hx~a!,",)5.,-), by H~ <H.,-~aT,-tlcL,-)': ', where the prime denotes 
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the product over all superfluous correlations of size l - 1  and n, is the 
superfluous multiplicity. We proceed in this way up to l =  1, dividing or 
multiplying, as required, the correlation formula at every hierarchical level 
l' by superfluous correlations arising at all previous levels >l'.  For the 
original multisite correlation, this natural decoupling scheme ensures by its 
construction the exact decoupling property (8) at equilibrium. 

As an example, we treat the cluster 

12 = {f2,= { 1, 2, 3, 4, 5}; t2b = { (1, 2) ,  (2, 3),  (3, 4) ,  (3, 5)}  } (9) 

represented graphically in Fig. 1, at the approximation level l=4 .  The 
correlation function ( f f l f f 2 f f 3 ~ 4 ~ 5 )  t decouples at the first level to three 
four-site correlations with the corresponding contribution 

Each of the three realizations of three-site clusters in 12, namely s 
{{I, 2, 3}; { ( I ,  2) ,  (2, 3)}},  f2(-~)(3) = {{2, 3, 4}; {(2, 3),  (3, 4)}},  and 
I2~ {{2, 3, 5}; {(2, 3),  (3, 5)}},  appears in two four-site correla- 
tions, while Q(4)(3)= {{3, 4, 5}; {(3, 4) ,  (3, 5)}}  has no superfluous 
presence in four-site correlations, so that we divide the product of three 
four-site correlations by 

(@1/~2~3)t (~2@3ff4)t (ff2ff3~5)t 

As concerns two-site clusters, three of them, t"2"~(2) = { { 1, 2 }; { (1, 2 )  } }, 
12t2)(2)= {{3,4}; { ( 3 , 4 ) } } ,  and t'2t3)(2)= {{3, 5}; {(3, 5)}},  have the 
correct multiplicity--they appear twice in four-site correlations and one 
time in three-site correlations. The last one, ff2(4)(2)= { {2, 3 }; { (2, 3)}  }, 
is contained in three four-site as well as three-site correlations and therefore 

5 

2 

, /  \ 
4 1 

Fig. 1. A cluster on the Bethe lattice. 
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we multiply our previous expression by (~z~3), .  Finally, the probabilities 
of empty single sites give the trivial contribution 1 and we get 

( I-I ex)  (~l~2e3~4)t (~11~20305)t (02~30405)t (~203)t 
x./2, t-- (fflO2ff3) t (#203~4) t (~203~5) t (9') 

4. LOWEST 1 = 2  ORDER OF THE DECOUPLING S C H E M E  

Let us investigate the lowest, l = 2, order of the proposed hierarchical 
decoupling and consider only the first two differential equations of the set 
(6) where the probability of an empty (q + 1)-site cluster with the central 
x-vertex is factorized into the NN two-site probabilities of empty sites: 

( ox I~I - \ F I ~ = , ( o x o x + o ) ,  (10) 

Here, the denominator arises due to the q-times presence of site x in NN 
pairs. The proposed form of nonequilibrium correlations in the lowest order 
is thus identical to that of equilibrium correlations (8). Equations (6a) and 
(6b) read 

q 
l-l== 1 ( 1 - P x - P x + = )  

[Jx=Zx (1 --px) q-1 P" (11) 

With regard to the form of the inverse profile (7), the asymptotic equi- 
librium solution of (11), {p*}, is indeed exact. 

We now apply our inhomogeneous version of Glauber dynamics to 
the process of crystallization of the lattice gas in a constant external poten- 
tial zx = z, associated with the symmetry breaking between the adjacent 
sublattices 1 and 2, one of them having a higher density of particles. The 
motivation comes from the fact (14) that at equilibrium the pair of inverse 
profile relations 

p*(1 -- p,)q-i p*(1 -- p*)q-' 
z -  z -  (12) 

( 1 - p * - p * ) q '  ( 1 - p * - p * ) q  

produces (for q > 2) as the only stable solutions those with different sub- 
lattice densities p~' ~ p*, as soon as the activity z is higher than the critical 
activity zc given by 

( q -  1) q- l  1 
p* = -  (13) z c -  ( q _ 2 )  q , q 
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It is clear that if we let the system evolve from a fluid phase p.~ = p under 
imposed z > z C, it tends toward its equilibrium crystal phase through a 
density sublattice bifurcation either at initial or some specific nonzero time. 

We will study the pair of evolution equations implied by (11) with 
constant activity z, but with the possibility of the sublattice density alterna- 
tion: 

(1 - P l - P 2 )  q 
tSl=z ( 1 _  pt)q_ j pj (14a) 

(1 -p~ -p2)  'j 
152=z (l_pz),t_~ P2 (14b) 

It is clear that these equations always provide a symmetric solution 
P~ = Pz = P with equivalent sublattice densities. Let us examine the stability 
of such symmetric solutions. Putting into (14a) and (I4b) p~ =p + 6p~, 
p2=p+~p2 with ~p~, r ] and p defined by 

(1-  2p) q 
f f=z  ( 1 - p ) ~ - '  P 

we obtain, in the first order of 6pl, 6p2 and after diagonalization, 

6(p, +p2))=()O+ 0 )(fi(p,+p2)'] (15a) 
6(p, - Pz)J 2 J \6 (p , -p2 ) ]  

t 

) ~ + = - - I + z ( q - - 1 ) ( I - - 2 P Y I - Z z q ( 1 - - 2 P Y I -  (15b) 
\ l - p  J \ l - p , )  

1 - 2p'] u 
;~_ -- - 1 + z ( q -  l )  \ 1 - p  / (15c) 

The eigenvalue 2+ is always negative and so it can never be the source of 
instability in time. On the other hand, 2 may be positive and can cause 
an instability on the line P~=P2. Let us denote by pr(z) the density 
threshold of the instability. It clearly satisfies the equation 

z ( q -  l )  = 1 (16)  

and the symmetric solution is stable for all p > Pr. 
In dependence on the strength of the chemical potential, we dis- 

tinguish three different nonequilibrium regimes of the system. 



Inhomogeneous Glauber Dynamics 505 

(i) 0 <~ z <<. 1 / ( q -  1): 2_ < 0 in this region of activity values, and so 
the system evolves smoothly to the asymptotic p* for an arbitrary value of 
initial p. 

(ii) l/(q-1)<<.z<~zc: The equilibrium density p* is still homo- 
geneous. But, while from the side of high densities, p > p * ,  the system 
exhibits behavior similar to the one in the previous case, a density bifur- 
cation arises at the initial time for 0~<p ~<pr. The difference between 
sublattice occupations vanishes as Pl, P2-* P*. For z = zc we have p r =  p*. 

(iii) z>zc :  The equilibrium sublattice occupations, defined through 
(12), are nonsymmetric, p* r p*. For small p, the density bifurcation takes 
place at initial time and the sublattice densities "move" toward one of the 
two nonsymmetric fixed points. For high p, the sublattice densities coincide 
up to the time when p = Pr (> l/q). Then they bifurcate and move toward 
one of the fixed points (p*, p*). These are the stable fixed points, which 

10 

Z 

8 

0 0.1 0.2 0.3 0.4 0.5 
9 

Fig. 2. The nonequilibrium phase diagram of a hard-core lattice gas of density p and activity 
- on the Bethe lattice of coordination 3 constructed at decoupling level /= 2: lines p* and p*,  
p* represent stable equilibrium homogeneous and inhomogeneous (18) solutions, respectively; 
for further explanation see the text. 

822/78/I-2-34 



506 ~;amaj and Percus 

can be seen by considering in (14a) and (14b) small deviations 6pj,  6P2 
from (p*, p~'), given by (12). The algebra yields 

= 

\6p2 ,] _ qp ,  _ 1 -- p* Z p* + qp* P*.] \6P2"l 
1 - p *  / 

For, e.g., q =  3 with zc=4,  explicit forms of p*, p~' are available, 

(z - 2) + [z(z - 4)] ,/2 (z - 2) - [z(z - 4)3 ,/2 
p *  = , p *  = ( 1 8 )  

2(z - 1 ) 2(z - 1 ) 

and always provide, for z > z c ,  two negative eigenvalues for the 2 x 2  
matrix in relation (17). 

For coordination number q = 3 ,  the instability region in the (p,z) 
plane is represented by shading in Fig. 2. We see that the factorization of 
the cluster correlations via the two-site probabilities of empty sites, although 
ensuring the tendency of the system with inhomogeneous densities to the 
correct equilibrium state, is too simple to predict adequately the true non- 
equilibrium behavior. In particular, the appearance of the instability on the 
line P L = P_, = P for small p before the activity acquires its critical value is 
evidently an artefact of the decoupling. The failure of the lowest-order 
approximation is not surprising: it neglects the important role of fluctua- 
tions in nonequilibrium phase transitions and thus represents a kind of non- 
equilibrium mean-field theory respecting, however, the exclusion character 
of NN interactions. 

5. H I G H E R  D E C O U P L I N G  DEGREES 

5.1. 1 = 3  

In order to include correlations in the instability picture, we increase 
the number of basic correlation elements by considering as well three-site 
probabilities of empty sites. The multisite correlations in (6a)-(6c) are then 
decoupled as follows: 

( ) q (6,.6.,.+~0,.+b), q FIo=~ l-I~=,,b>o 
if-,- I-[ 5.,.+,, u 

. , , = ,  ,= Ho=, <GG+.,),  ~-: 
x (5.,.5~,~-,~,1-2~/2 (19a) 

where the denominator reflects the (q-1) - t imes  appearance of each 
NN bond in the product of three-site correlations, and the last term 
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compensates for the "superfluous" presence of the central xth site in three- 
and two-site correlations; 

I ) (d'+bS-~ox+a)' 
# , - + , 6 x + ~ I  #~x+a~+,- = (c?,.#.~+~), 

c t 

• (#x+o ~ 6(.,-+.,+c), (19b, 

Inserting these decouplings into (6a)-(6c), we obtain a closed system of 
equations to be solved for site densities and three site probabilities of empty 
sites. At t ~ ~ the system reaches the correct equilibrium state charac- 
terized by the inverse profile (9) for the applied potential and the exact form 
of three-site correlations 

( 5_x'ff x + af f .v  + b ) . . . .  = 
(1 --p.* -- p.,.+,,)(1 - -p*  -- P.,-+ b) 

(1 -p* )  
(20) 

In order to describe the process of crytallization, we will now concen- 
trate on the case of constant activity z while allowing inhomogeneity in par- 
ticle densities on adjacent sublattices 1 and 2. The probabilities of a connec- 
ted cluster of three empty sites with the central site on sublattice 1 or 2 will 
be denoted by g~3j and g~3), respectively. According to their definition, they 
are limited by 

max{0, 1 --P,-2Pt3} --~-< 6,"r min { 1 , ~  2 - p~ - 2pp} (21) 

where (c~,//) = (1, 2) or (2, 1). Taking into account (19a) and (19b), we find 
that Eqs. (6a) and (6c) yield 

P l  = g f l  - -  P l  (22a) 

152 = zf2 - p2 (22b) 

( g]3f2 )--2g{3'+2--p,--2p2 (22c) d~ 1--pl--P2 

cr[3)~ e ) 
~,2 Jl _ 2 g ~ + 2 _ p  _2pj (22d) 

with f~ (~= 1, 2) defined by 

((3) q ( q -  l)/2 

g~ ) (1 - p,)~q-~q-2~/2 (22e) 
f"  = (1 - pj - -  p 2 )  q l q -  2) 
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The investigation of the stability of the set of differential equations 
(22a)-(22e) with respect to the symmetric solutions p ~ = p 2 = p ,  g(t31= 
g ~ _  gO) can be performed in the whole space of {p, g(3)} values allowed 
by formula (21). For simplicity, we will restrict ourselves to physical 
situations in which the initial state of the system corresponds to a stable 
(p ~< p~*) or unstable (p > p*) homogeneous equilibrium state with "equi- 
libriumlike" constrained multisite correlations of type (8). The correspond- 
ing activity is modified at initial time t = 0 to the prescribed value z and 
our task is to answer whether or not there is a tendency at t = 0  for a 
sublattice density bifurcation. Putting p~ = p + 6p~, P2 = P + 6 p 2 ,  g~3)= 
g(3) + 6g(t3), g~3)= g(3)+ 3g~31 with g(3)= (l - 2p)2/(1 - p) into (22a)-(22e) 
and expanding all terms up to the first order in 3p,,  6pz ,  6g] 3), ,~(3~ ~g 2 , we  

,,,,; "12//!  / 

4g~3) /  \ ~xb2, "21,] ~,, b 22 (/22t] / \ (~g ~3 ) /  

where the matrix elements are functions of (p, z). Since the transformation 
matrix in (23) has the block-cyclic form, all its eigenvalues are available in 
analytic form. Three of them are negative in the whole region of the 
allowed values of (p, z), while the fourth one is positive provided that 

( a l l  - -  b l l  )(022 --  b22 ) - (a12 - -  bt2)(a2i --  321 ) < 0 (24) 

This inequality can be achieved only when the real activity z lies in the 
interval (Zmin, Zmax) with Zmin and Zma ~ defined by 

_ ( l - p ) " - '  E 2 + ( q _ 3 ) p _ x / - ~ ]  (2Sa) 
~mi, -- 2(q -- 1 )( 1 -- 2p) q 

Z (1 - -P)" -  ~ [2 + (q-- 3)p + X/~ ] (25b) 
""x-- 2(q-- 1)(1 - - 2 p )  '1 

D =  [ p 2 ( q 3 - 8 q 2  + 5 q - 2 ) + 4 p q ( q +  1 ) - 4 q ] / ( q - 2 )  (25c) 

The direction in which the instability takes place is the expected sublattice- 
symmetry breaking combination 

c t (P, Z )(P l -- P z ) + c 3(P, Z )( g(I 3 ) - g 2~c3 )'; (26) 

For coordination number q =  3, the instability region in the (p, z) 
plane is indicated by shading in Fig. 3. Now, the scenario turns out to be 
consistent. Increasing activity z from 0 up to z, (=4) ,  one observes no 

find 
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As in Fig 2, at decoupling level l =  3. 

0.5 

instability on the hypersurface p~ = P 2 ,  g]3) -I3) = g2 �9 As soon as z=z , . ,  the 
instability arises at the exact critical density p,*. = �89 Increasing z further, we 
find that the nonsymmetric fixed points play the dominant  role and, 
simultaneously, there exists an instability interval in p depending on the 
strength of the external potential. 

5.2. 1 = 4  

There exist two different topological realizations of four-site clusters 
on the Bethe lattice with q/> 3: the first consists of one central site at sub- 
lattice 1 (correlation notat ion g l  4)) or  2 _t4h (~2 p and its arbitrary three NN's  
on sublattices 2 and 1, respectively; the other is the sublattice-independent 
sequence, within the cluster, of one- and two-coordinated vertices t,,t4~/ ~.612 l" 

Proceeding in the previously outlined way, we obtain for q = 3, after some 
algebra, the following set of evolution equations: 

[)1 = zg]41-- Pl 

/~2 _(41 
= z g 2  - -  P 2  

g(41( oA4)'t2 
~c131 _zgCj41_2z  2 612 ,  ( 1 - - p t  

o.(31[ o(3)12 
61 ~62 ! 

- 2gll 3~ + 2 - P l - 2P2 

- P 2 )  

(27a) 

(27b) 

(27c) 
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g(4>(.(tl•2 ! 61_1 .;(3) 
~, 2 = --zg(2 4 ) -  2z (g]3))2 g ~ 3 ) ( 1 - - p , - - P 2 )  

-- 2g~ s) + 2 -- P2 -- 2p~ (27d) 
~(4)~(4)1 ~(4) ~4 

g~4)= __zg~4)__ 3z ~I ~2 t,~12 ) (g~3))4 (g~3))4 (1 - p , - p 2 )  3 

- -  3g~4) + 3g~ 3)+ Pl (27e) 

o-(4)o.(4)/ cr (4) ]4 
~r(4)__ 61 62 1.612/ 
~2 --  - - z g ~  4) - -  3 z  (g~3))4 ( g~3 ) ) 4  (1 - -  p ,  - -  p 2 )  3 

- 3g~)+  3g~_3) + P2 (27f) 

_,,),2 , ,  r g,,4__~) + ~ 1  " - - z  ,~12J t l - - P l - - P 2 )  

g2 J 
(4) 3 

(g12 )  (1 - - P l - - / 9 2 )  [-g~4)+ ~(4)"1 
-- z (g~----3)-~e (g---(2~))--2 ~2 .1 

~(41 = - 2 ~ t  2 - r - 2 ( 1 - P l - P 2 )  (27g) 

The results of  numerical investigation of the stabil i ty propert ies 
of the system of differential equations (27a)-(27g) in the symmetric sub- 
space Pl = P 2 = P  with equi l ibr ium-constrained correlat ions g~31=g~31= 
(1 - 2p)2/(1 - p), g(l 4) = g~41 _- g(~)l_ = (1 - 2p)3/(1 - p)2, are represented 
graphically in Fig. 4. The "tongue" (I) originating at the critical point 
(p,* = 1/3, z~ = 4) corresponds to the instability along direction 

CI(p, z) (P l  --  P2) + C3(p, 2)(g(l 3) -- ~2-(3)) + c4(p ' 2)(g]4)  __ g2-(4)x) (28a) 

leading to a sublattice density bifurcation. Note that in comparison with 
the l =  3 case the instability region is relatively large. The other instability 
region (II) originates at p = 0  very near to the critical activity z ~ = 4  and 
corresponds to an instability along 

c I (p ,  z) (P l  + P 2 ) + c 3 ( p ,  z) (g~  3 ) +  g2(3)) 

Jr ca(p,  z)(g]4)  "-{ "- g~4)) q_ e4(p ' 2) ~,2"(4) (28b )  

This indicates an abrupt  exponential time increase in density and corre- 
lations which is a natural consequence of the fact that the system is far 
from equilibrium. As shown in Fig. 4, the instability regions intersect one 
another,  and the system with (p, z) parameters inside this intersection 
exhibits a simultaneous tendency to exponential time increase in densities 
and correlations as well as to a sublattice density bifurcation. The instability 
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Fig. 4. As in Fig. 2, at decoupling level 1= 4. 

region (II) arising at the l = 4  approximation level might be intuitively 
associated with the first appearance of a cluster element containing both 
a vertex and its complete q =  3 coordination shell; we expect only small 
quantitative corrections in subsequent approximations. 

6. C O N C L U S I O N  

The time evolution of a system of adsorbing and desorbing hard-core 
particles on a Bethe lattice in an inhomogeneous potential, governed by 
Glauber dynamics, is determined by the set of differential equations (6) for 
one-site densities and multisite probabilities of vacant connected clusters. 
At equilibrium, the articulation character of lattice points permits us to 
find not only the inverse profile relation (7) for applied potential, but 
also the exact density-dependent form of multisite correlations in the 
inhomogeneous regime (8), showing an interesting pairwise structure. This 
result motivated us in Section 3 to propose a natural hierarchical decoup- 
ling of nonequilibrium multisite correlations which automatically by its 
construction ensures the tendency of the system to true equilibrium with 
the exact form of the whole set of multisite correlations. This property 
is a necessary condition for obtaining consistently the nonequilibrium 
phase transition from a fluid to an inhomogeneous crystal phase under 
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homogeneous external potential, accompanied by an instability leading to 
the bifurcation of sublattice densities. As soon as correlations are included 
in the instability mechanism (see Figs. 3 and 4), the results, although quan- 
titatively dependent on the decoupling degree, are consistent in that 
instability in an equilibrated initial homogeneous state can arise only if the 
activity exceeds its critical value zc (so that there exists an equilibrium crys- 
tal phase--the reason for a sublattice density bifurcation). The appearance 
of a new instability region for the system far from equilibrium (Fig. 4), 
associated with an exponential increase in densities and correlations in 
time, deserves attention. The numerical results indicate that there would be 
a correlation between the instabilities: both of them take place almost 
simultaneously when the activity acquires its critical value. This suggests 
a possible interplay "at distance" of different kinds of nonequilibrium 
instabilities. 
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